Generalization of matching extensions in graphs-combinatorial interpretation of orthogonal and q-orthogonal polynomials
نویسندگان
چکیده
In this paper, we present generalization of matching extensions in graphs and we derive combinatorial interpretation of wide classes of orthogonal and q-orthogonal polynomials. Specifically, we assign general weights to complete graphs, cycles and chains or paths defining matching extensions in these graphs. The generalized matching polynomials of these graphs have recurrences defining various orthogonal polynomials—including classical and non-classical ones—as well as q-orthogonal polynomials. The Hermite, Gegenbauer, Legendre, Chebychev of the first and second kind, Jacobi and Pollaczek orthogonal polynomials and the continuous q-Hermite, Big q-Jacobi, Little q-Jacobi, Al Salam and alternative q-Charlier q-orthogonal polynomials appeared as applications of this study. © 2005 Elsevier B.V. All rights reserved.
منابع مشابه
HIGHER ORDER MATCHING POLYNOMIALS AND d-ORTHOGONALITY
We show combinatorially that the higher-order matching polynomials of several families of graphs are d-orthogonal polynomials. The matching polynomial of a graph is a generating function for coverings of a graph by disjoint edges; the higher-order matching polynomial corresponds to coverings by paths. Several families of classical orthogonal polynomials—the Chebyshev, Hermite, and Laguerre poly...
متن کاملRecurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کاملClasses of Bivariate Orthogonal Polynomials
We introduce a class of orthogonal polynomials in two variables which generalizes the disc polynomials and the 2-D Hermite polynomials. We identify certain interesting members of this class including a one variable generalization of the 2-D Hermite polynomials and a two variable extension of the Zernike or disc polynomials. We also give q-analogues of all these extensions. In each case in addit...
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملSome generalizations of the combinatorics of orthogonal polynomials blah blah blah
We generalize the combinatorial interpretations of orthogonal polynomials found in [2] in two directions: first, we show that the interpretation of moments as a generating function of Motzkin paths may be generalized to no only different linear functionals, but to arbitrary sequences of polynomials. Second, we develop several new involutions to describe the L norm of polynomials that satisfy a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 296 شماره
صفحات -
تاریخ انتشار 2005